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Abstract 18 

Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously 19 

variously dated between 6 – 3.4 ka. Examination of the stratigraphic and palaeoenvironmental 20 

context of a mid-Holocene whale beaching allows us to accurately constrain the timing of the 21 

transgressive, highstand and regressive phases of the mid- to late Holocene sea level highstand in 22 

the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today’s sea level by 7100-6890 23 

cal yr BP, attaining a highstand of > 1 m above current seal level shortly after 5290-4570 cal yr BP 24 

before falling back to current levels by 1440-1170 cal yr BP. The cetacean beached into an intertidal 25 

hardground pond during the transgressive phase (5300-4960 cal yr BP) with continued transgression 26 

interring the skeleton in shallow-subtidal sediments. Subsequent relative sea level fall produced a 27 

forced regression with consequent progradation of the coastal system. These new dates refine 28 

previously reported timings for the mid- to late Holocene sea level highstand published for other 29 

regions. By so doing, they allow us to more accurately constrain the timing of this correlatable global 30 

eustatic event.  31 

Keywords: Persian Gulf; Arabian Gulf; Sabkha; Sea level; OSL; Quaternary 32 

 33 

Introduction 34 

The present-day morphology of the Abu Dhabi coastline of the United Arab Emirates is interpreted 35 

to have developed during the late Holocene as sediment accreted around Pleistocene age limestone 36 

cores, associated with the eastern termination of the Great Pearl Bank, and prograded into the 37 

recently-flooded Persian Gulf (e.g. Evans et al., 1969; Lokier and Steuber, 2008; Purser and Evans, 38 

1973). However, establishing the timing of the Holocene sea level maximum for the Persian Gulf, 39 

and, hence, the initiation of late Holocene progradation of the Abu Dhabi shoreline, has been 40 
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problematical. This study employs sedimentary sections hosting a cetacean skeleton as a data source 41 

to provide new evidence for the constraint of the Holocene sea level maximum in the Persian Gulf. 42 

During the Last Glacial Maximum (LGM), between 26.5 and 19 ka (Clark et al., 2009), eustatic sea 43 

level lay between 120 – 130 m lower than present-day sea level (Clark et al., 2009; Fleming et al., 44 

1998; Hanebuth et al., 2009; Peltier and Fairbanks, 2006). During this time, the sea floor of the 45 

Persian Gulf was exposed and terrestrial aeolian processes became dominant. The northwesterly 46 

Shamal wind blew sand, sourced from Iran, towards the south and east and an extensive dune 47 

system developed over much of the basin floor (Sarnthein, 1972). With the end of the LGM, between 48 

20-19 ka (Clark et al., 2009; Yokoyama et al., 2000), a pulse of fresh water caused a rapid sea level 49 

rise of 10 m (Clark et al., 2009; Hanebuth et al., 2009), followed by a slower, relatively sedate, 50 

increase. Marine waters reached the Strait of Hormuz at approximately 14 ka and by 12.5 ka had 51 

entered the Gulf itself and a true seaway had been established (Lambeck, 1996).  52 

The objectives of this study are to utilise a whale beaching event to refine the timing and amplitude 53 

of the Holocene sea level maximum in the Persian Gulf and establish the palaeoenvironmental and 54 

sequence stratigraphic context of the coastal system at that time. By understanding these factors it 55 

will be possible to establish better-constrained sedimentological and stratigraphic models for the 56 

development of the Holocene sabkhas of the southern shoreline of the Persian Gulf. These systems 57 

are the oft-cited analogue for many of the petroleum reservoirs of the Middle East, thus, an 58 

understanding of their mode of formation is imperative to the interpretation of ancient petroleum 59 

systems and the development of accurate reservoir models. 60 

 61 

Location of study area 62 
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The study site lies in the Mussafah Channel situated in the Mussafah Industrial Zone of Abu Dhabi 63 

(Fig. 1). The Mussafah Channel is an 8.3 km long dredged channel that was excavated through the 64 

coastal Sabkha sequence during the early 1980’s. As no further development of the channel took 65 

place, the unsupported walls collapsed and eroded back to expose fresh surfaces. Erosion continued 66 

until 2006 when a cetacean mandible was exposed at the eastern termination of the channel. 67 

Excavation revealed a largely-intact skeleton of a baleen whale of the genus Megaptera (Stewart et 68 

al., 2011) of which the front 10 m was recovered, including the most-diagnostic cranial and forelimb 69 

parts. 70 

Geographic and climatic setting 71 

The Persian Gulf is a shallow epicontinental sea lying in a crescentic northwest to southeast oriented 72 

basin floored by the continental crust of the northern margin of the Arabian Plate (Fig. 1). The Zagros 73 

Mountains bound the northern shores while the south and west shorelines are bordered by the low-74 

relief Arabian Peninsula. Water depths are shallow, with an average depth of 35 m and rarely exceed 75 

100 m. The floor of the Gulf dips gently north-eastward with the deepest water areas lying close to 76 

the southern coast of Iran.  77 

The Persian Gulf coastline of the emirate of Abu Dhabi forms part of a low-angle carbonate ramp 78 

depositional system. The supratidal zone of this ramp is characterised by an active sabkha setting in 79 

which Recent evaporite minerals are precipitating within the shallow subsurface and an ephemeral 80 

halite crust at the surface (Lokier, 2012). The sabkha grades seawards into a broad intertidal mud 81 

flat with well-developed microbial mat communities characterising the upper intertidal zone and a 82 

polygonal hardground in the lower intertidal zone (Lokier and Steuber, 2009). The hardground 83 

extends offshore into the shallow, carbonate-dominated subtidal setting. The mainland coast of Abu 84 

Dhabi is locally protected from open-marine conditions by a number of peninsulas and offshore 85 

shoals and islands (Fig. 1) associated with the east–west trending Great Pearl Bank. The limited fetch 86 
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of the Persian Gulf inhibits wave development, thus, low-energy conditions dominate. The tidal 87 

regime of the Persian Gulf is microtidal (1–2 m).  88 

The very low-angle geometry of the Abu Dhabi coastline results in this region being extremely 89 

sensitive to fluctuations in sea level. Even small changes in relative sea level will result in significant 90 

lateral shifts in facies belts. For example, current estimates of eustatic sea level rise of 3.3 mm/yr 91 

(Cazenave and Nerem, 2004; Leuliette et al., 2004) would result in marine transgression of the Abu 92 

Dhabi shoreline at a rate of 8.25 m/yr. This transgression is, to some extent, countered by 93 

progradation of the sabkha system (Lokier and Steuber, 2008). The sensitivity of this coastal system 94 

to minor sea level fluctuations provides an opportunity to apply these findings beyond the 95 

immediate region of the Persian Gulf to further constrain the timing and extent of the  mid- to late 96 

Holocene global sea level highstand. 97 

The climate at the Abu Dhabi coast is extremely arid with a mean annual precipitation of 72 mm 98 

(Raafat, 2007). Rainfall is often extremely localised, occurring as brief heavy rainstorms concentrated 99 

during the months of February and March. Some regions may not experience any rainfall for periods 100 

in excess of a year. Evaporation rates are high with an annual mean of 2.75 m (Bottomley, 1996) 101 

resulting in elevated salinities of 45–46 g l−1 along the open-marine coast of Abu Dhabi and up to 89 102 

g l−1 in restricted lagoons (Lokier and Steuber, 2009). Coastline temperatures 50 km west of Abu 103 

Dhabi City range between 7°C at night during the winter and 50°C during daytime in the summer 104 

(Lokier et al., 2013). The prevailing wind is the north-westerly Shamal. The shallow warm waters of 105 

the coast generate high coastal humidity, often reaching 100% during summer months. 106 

 107 

Methodology 108 
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The site was surveyed utilising a Leica total station employing the Admiralty Chart Datum of mean 109 

lowest calculated astronomical tide. The stratigraphy of the sediments was recorded in detail at 110 

three locations, facies geometries were characterised and representative sediment samples were 111 

collected throughout the profile. Unconsolidated sediment samples were prepared as twenty four 112 

resin-impregnated thin sections. Thin sections were subjected to modal analysis, 200 points, in order 113 

to quantify the proportions of component allochems. In order to further characterise sedimentary 114 

facies, thin sections were examined using standard light microscopy on a polarising microscope. 115 

Sediment and skeletal allochem samples were also collected from throughout the excavation site 116 

with particular attention being given to their relationship to the cetacean bones.  117 

Five samples were designated for radiocarbon analysis via accelerator mass spectrometry (AMS) at 118 

the 14Chrono Centre, Queens University, Belfast. During sample selection, skeletal material from 119 

deposit-feeding organisms was avoided as these organisms may ingest detrital ancient carbon which 120 

will become incorporated into their shells and significantly offset 14C ages. All of the selected 121 

samples were subjected to detailed examination in order to protect against taphonomic processes 122 

that would bias radiocarbon analysis. The selected material comprised three bivalves, one barnacle 123 

and one specimen of cetacean bone. Unfortunately, the initial elemental analysis of the sample of 124 

whale bone (MUS 17B) indicated that there was insufficient remaining protein to undertake 125 

radiocarbon dating. All of the 14C results are presented as conventional radiocarbon ages employing 126 

the Libby half-life method (Stuiver and Polach, 1977). Results were calibrated using the CALIB 127 

(version 7.0.0) calibration program (Stuiver and Reimer, 1993) employing a marine calibration curve 128 

and a regional reservoir age correction (∆R) of 180 ± 53 (Hughen et al., 2004). 129 

Optically stimulated luminescence (OSL) dating was undertaken on three samples collected from 130 

sediment found directly adjacent to the whale skeleton. Samples were analysed at the Luminescence 131 

Dating Laboratory of the Sheffield Centre for Drylands Research (SCIDR). The palaeodose of quartz 132 

grains was measured on 9.6 mm diameter aliquots by employing a modified form of the single 133 
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aliquot regenerative (SAR) method (Murray and Wintle, 2000) using a Risø TL DA-20 luminesce 134 

reader with radiation doses administered from a calibrated 90strontium beta source. An 135 

experimentally derived preheat of 180°C for 10 seconds and a cut-heat of 160oC was used within the 136 

SAR. During testing with infrared stimulated luminescence (IRSL) it was found that a residual feldspar 137 

signal existed within the samples (possibly due to feldspars included within quartz), which was 138 

removed prior to each OSL SAR measurement with an IRSL wash for 40 seconds at 50°C (Banerjee et 139 

al., 2001; Wilson et al., 2008). Reproducibility was established by undertaking up to 24 replicate 140 

palaeodoses on each sample. The above methodology was validated with a dose recovery test on 141 

sample Shfd11039 which returned a given to recovered dose ratio of 0.97 ± 0.02. Final palaeodoses 142 

for each samples were derived from this replicate data using the central age model (Galbraith and 143 

Green, 1990) excluding outliers (those aliquots outside 2 standard deviations of the mean). 144 

Elemental concentrations were determined from ICP-MS analysis with the resultant uranium, 145 

thorium, rubidium and potassium values being used, once suitably attenuated for moisture (a 146 

saturation value of 30 ± 5% was applied), size and density to calculate sample dose rates. 147 

Cosmogenic contributions were calculated using the algorithm of Prescott and Hutton (1994). 148 

Samples for the analysis of δ18O and δ13C were prepared from three thick sections of articulated 149 

filter-feeding bivalves. Powder was milled from the thick sections parallel to growth bands using a 150 

0.8 mm diameter tungsten drill bit. Samples were analysed at GeoZentrum Nordbayern using a 151 

Gasbench II connected to a ThermoFinnigan Five Plus mass spectrometer. External reproducibility is 152 

better than 0.1‰ δ18O and δ13C at 2 sigma. 153 

 154 

Results  155 

Stratigraphic context of the cetacean skeleton 156 
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Three stratigraphic sections were logged in detail for this study (Fig. 2). The sections all lie on a 157 

north-south transect along the eastern wall of the Mussafah Channel, and were selected in order to 158 

avoid areas with any evidence of anthropogenic disturbance. The central section (MC-3) lies within 159 

the excavation site and records the relationship between sedimentary facies and the skeleton (Figs 3 160 

& 4).  161 

The base of the stratigraphic succession is only observed in section MC-1 where it comprises a grey 162 

peloidal and bioclastic carbonate sand with large gypsum lathes up to 30 cm in diameter (Table 1, 163 

Figs 2 & 5). This horizon is overlain by a locally-degraded laminated microbial mat containing isolated 164 

bioclasts bound within the laminations. The microbial mat horizon is overlain by a carbonate-165 

cemented planar hardground dominated by bioclasts but with isolated gypsum lathes. The planar 166 

surface of the hardground lacks any evidence of encrustation or boring. Above the hardground, 167 

locally-laminated peloidal bioclastic carbonate sand becomes increasingly mud-dominated up-168 

section (Table 1) before passing into a horizon of bioturbated, poorly-laminated muddy facies that 169 

again contains peloids and bioclasts. This horizon is locally bioturbated by mm-wide sub-vertical 170 

burrows with distinctive dark-brown margins. Locally cross-bedded bioclastic gravels, dominated by 171 

gastropods, bivalves and peneroplid foraminifera, are banked against some of the bones of the 172 

skeleton, these gravel banks do not exhibit any preferred orientation. The succeeding unit is a peloid 173 

and bioclastic sand with mud. The top of the succession comprises gypsum gravel with an increasing 174 

anhydrite component in the uppermost portion (Table 1). The anhydrite is locally distorted to form 175 

an enterolithic texture (Figs 2 & 4B). Gypsum lathes occur throughout the succession with a decrease 176 

in size up-section. Siliciclastic material was only observed in the hardground and underlying units 177 

(Fig. 5). A series of iron-oxide stained horizons occur at a depth of 26-53 cm below the surface of the 178 

sediment; these stains form bands between 1-4 cm in thickness with the most-stained and thickest 179 

band occurring at their base (Figs 2 & 4B).  180 



9 
 

The skeleton of the cetacean lies, in an inverted position, atop the hardground within the peloidal 181 

bioclastic carbonate sand and mud horizons. The lower portions of the jaws and skull locally 182 

penetrate into, and are embedded within, the underlying hardground. Locally, articulated bivalves 183 

(Saccostrea) were found attached to the ribs close to the vertebrae. The sediments adjacent to the 184 

skeleton exhibit lateral variability both in terms of grain size and component allochems (Table 1).  185 

 186 

Dating the stratigraphic sequence 187 

The calculated radiocarbon dates are presented in Table 2 along with the calibrated age ranges and 188 

delta 13C values for the samples. The reported δ13C values are appropriate for the nature of the 189 

materials being considered in the study (Walker, 2005). The calibrated ages are internally consistent 190 

with the oldest date (6887-6567 cal yr BP) being recorded from the hardground, an age of 5304-191 

4957 cal yr BP being recorded for a barnacle identified as Coronula diadema that is believed to have 192 

been attached to the whale’s skin in life (Stewart et al., 2011) and so dates the whale at death and 193 

the youngest ages (5285-4574 cal yr BP) being recorded from the sediments surrounding the 194 

skeleton. These dates are consistent with previously published radiocarbon dates for the upper part 195 

of the Mussafah Channel sedimentary sequence (Stewart et al., 2011; Strohmenger et al., 2010). 196 

Previously reported ages for the microbial mat range between 6230-7103 cal yr BP (Stewart et al., 197 

2011) but must predate the hardground that has been dated at 6887-6567 cal yr BP. Thus, we can 198 

constrain the age of the microbial mat to between 7103-6887 cal yr BP. 199 

The results of the OSL analysis are presented in Table 3 along with palaeodose and calculated dose 200 

rates for the samples. The derived ages, of between 3.18 ± 0.24 – 2.51 ka ± 0.14, are also internally 201 

consistent but are significantly younger than those calculated for the equivalent horizons using 202 

radiocarbon analysis. These large discrepancies between the radiocarbon dates and the dates 203 

derived from OSL are a cause for concern. As stated, the radiocarbon dates are consistent with ages 204 
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published from earlier studies of the Abu Dhabi Sabkha sequence, it is therefore inferred that the 205 

OSL dates are problematical. 206 

The OSL replicate palaeodose data is essentially normally distributed, showing little scatter apart 207 

from an occasional outlier (2, 4 and 5 aliquots from Shfd11039-42 respectively) and a dose can be 208 

recovered successfully in the lab. It would appear unlikely that the OSL ages are too young as a result 209 

of mixing in of younger sediment due to bioturbation (Bateman et al., 2007) or incorrect 210 

measurement.  211 

OSL relies on establishing the average burial environmental dose rate in order to calculate the age of 212 

the sample. Environmental dose rate is controlled by the presence of radioactive elements (uranium 213 

(U), thorium (Th) , rubidium (Rb), potassium-40 (K)) and cosmic rays. The presence of water is also 214 

important as it absorbs radiation differently from the sediment (Lian et al., 1995). During OSL date 215 

calculation, it was assumed that the average moisture since burial was at saturation (30%). This 216 

assumption is based on the presence of the iron-stained horizons which show that, prior to the 217 

excavation of the Mussafah Channel, the site lay wholly below the water table. This then is not the 218 

source of OSL age under-estimation. 219 

Both uranium and potassium are soluble, therefore it is possible that fluctuating saline groundwater, 220 

coupled with a high evaporation rate, could have modified the environmental radiation dose since 221 

burial by leaching and concentrating these elements. Whilst it is not possible to reconstruct changes 222 

of dose rate through time, two observations can be made. Firstly, both U and K increase with depth 223 

and secondly the Th:U ratio for the three samples is 0.22, this is significantly different than the upper 224 

continental crustal average (UCC) of 3.82 (Taylor and McClennan, 1985). It is therefore possible that 225 

the elemental concentrations, as measured, do not reflect the average concentrations during the 226 

burial history of the sediments. Similar disequilibrium issues were identified in Wood et al. (2012) 227 

and Stevens et al. (2014) from Persian coastal samples. In these studies, conservative (large) 228 
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uncertainties were applied to correct ages for disequilibrium. In the current study we can show with 229 

the benefit of the independent radiocarbon chronology that this approach doesn’t work for young 230 

samples. If, however, an average UCC is applied to the data by reducing the U concentrations (i.e. 231 

assuming present-day values reflect recent concentration) OSL ages are brought into line with those 232 

of radiocarbon (5.31 ±0.27 to 6.76 ±0.34 ka; Table 3). The true validity of the corrected age estimates 233 

is open to question but is illustrative of the probable cause of the age disagreement with the 234 

radiocarbon data. As a result of the uncertainties surrounding the OSL chronology this has been 235 

excluded from subsequent interpretation and discussion. 236 

  237 

Palaeotemperature 238 

Mean annual palaeotemperatures were calculated following Goodwin et al. (2003) using the 239 

equation: temperature = 20.6 – 4.34 [δ18Oaragonite – (δ18Owater - 0.2)] (Table 4). A value of +3 ‰ was 240 

applied for δ18Owater in accordance with the relationships observed from the analysis of Recent 241 

marine water samples taken from offshore Abu Dhabi (Lokier and Steuber, 2009). The two Pinctada 242 

specimens yielded palaeotemperatures of 27.7°C and 30.5°C while the Barbatia specimen yielded a 243 

palaeotemperature of 22.6°C (Table 4). The differences in these results are reconcilable as Pinctada 244 

are often associated with mid to lower shore settings while Barbatia is associated with deeper, 245 

lower shore to sublittoral, environments (Bosch et al., 1995). These temperatures are entirely 246 

consistent with the temperatures observed along the coastline of Abu Dhabi today with surface 247 

temperatures ranging between 22-37°C (Evans et al., 1973) while temperatures below 4-5 m water 248 

depth range between 20-36°C (Kinsman, 1964). 249 

 250 

Interpretation and discussion 251 
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Palaeoenvironmental context of the skeleton 252 

The siliciclastic material within the lowermost units of the sedimentary sequence is inferred to have 253 

been derived from the underlying quartz-rich sands as documented by Kirkham (1998). These sands 254 

have previously been interpreted as being deposited as aeolian dunes and are dated from prior to 255 

the post-glacial reflooding of the Persian Gulf (Evans et al., 1969) with ages between 26,760 (±180) 256 

14C yrs BP and 24,010 (±150) 14C yrs BP proposed by Strohmenger et al. (2010). However, as these 257 

dates are derived from bulk samples of sediment, they should be treated with a degree of caution as 258 

there is a strong likelihood of the samples being contaminated with carbonate material from a wide 259 

range of sources and with a wide range of ages. During transgression these aeolian sands were 260 

locally eroded and admixed into the overlying transgressive quartz-rich carbonate unit.  261 

The overlying microbial mat (Fig. 2) has previously been interpreted as a transgressive unit (Kenig et 262 

al., 1990). Recent microbial mat communities are well-developed in the Recent Abu Dhabi sabkha 263 

where they form a belt marking the landward-limit of the intertidal zone (Lokier and Steuber, 2008). 264 

At this position, brief periods of flooding prevent complete desiccation of the mats whilst regular 265 

exposure inhibits predation by grazing marine gastropods. The microbial mat horizon observed in 266 

the Mussafah Channel section is here inferred to record a similar stressed upper intertidal 267 

environment. Its stratigraphic position, immediately overlying the transgressive quartz-rich 268 

carbonate sands, is consistent with a slowing in transgression or a stillstand.  269 

In the Recent Abu Dhabi sabkha the microbial mats are typically only 1-5 cm in thickness. The 270 

development of thicker microbial mats is limited to depressions in the upper intertidal zone where 271 

water is able to pond following spring high tides. Evaporation from these ponds results in elevated 272 

salinities that prohibit colonisation by grazing fauna, thereby allowing successive generations of 273 

microbial mat to build laminated units until the ponds are infilled. The microbial mat observed in the 274 

Mussafah Channel section is 11 cm in thickness (Fig. 2). This may be attributed to the flooding of 275 
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antecedent dune topography followed by a stillstand. Subtle variations in relief would result in local 276 

variations in water depth with isolated shallow basins permitting the development of locally thicker 277 

microbial mat units. 278 

The hardground that immediately overlies the microbial mats (Fig. 2) is interpreted to have 279 

developed in the lower intertidal to subtidal zone, a setting in which hardgrounds are developing in 280 

the Persian Gulf today (Lokier and Steuber, 2009; Shinn, 1969). This implies renewed transgression 281 

following deposition of the microbial mat horizon (Fig. 6). The preservation of the underlying 282 

microbial mats during transgression is problematic since marine flooding will place the mats in an 283 

environment where gastropods or other marine organisms are able to actively graze upon them. 284 

However, if transgression was rapid, then it is feasible that the microbial mats would be promptly 285 

buried, thus preserving them from grazing epifauna. Buried mats would remain vulnerable to 286 

destruction through the activities of burrowing deposit-feeding organisms. However, the modern 287 

microbial mats are observed to be anoxic at shallow depths below the surface. Such anoxia would 288 

inhibit infaunal activity. The development of hardgrounds can be rapid, crusts may form in less than 289 

20 years (Shinn, 1969), thus aiding the preservation of underlying microbial mats. 290 

Recent intertidal hardgrounds form large-scale (>100 m diameter) polygons with a dish-like 291 

morphology comprising a planar interior and gently-uplifted margins. The polygons retain water to 292 

form shallow (10 cm) ponds at low tide and are totally inundated, and recharged, during high tides. 293 

The interior of these intertidal polygons is covered by a thin (3-5 cm) veneer of sediment that may 294 

be temporarily removed during high-energy storm events (Lokier and Steuber, 2009). Beneath this 295 

veneer is a poorly-lithified firmground of 1-4 cm thickness that represents the zone of active 296 

cementation (Lokier and Steuber, 2009). Beneath the firmground is the hardground proper. The 297 

presence of the unlithified sediment veneer prohibits encrustation by benthic communities over 298 

most of the hardground surface; encrustation is limited to the exposed uplifted polygon margins 299 

where a diverse range of benthos is observed.  300 
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The lower portions of the cetacean jaws and skull are locally embedded within the hardground; the 301 

cetacean must therefore have been emplaced into the intertidal zone prior to the completion of 302 

lithification. As the bones do not completely penetrate through the hardground, it is likely that the 303 

hardground had already begun to lithify prior to the arrival of the cetacean. Following arrival, the 304 

heavier bones of the jaw and skull would have penetrated into the firmground to become cemented 305 

during continued hardground development. The presence of encrusting benthos on the low-lying 306 

bones proves that the lower portion of these bones must have been regularly submerged and 307 

supports the interpretation of emplacement of the cetacean onto a shallow, lower intertidal 308 

hardground pond. The interpretation of emplacement of the whale into a shallow intertidal 309 

hardground pond is supported by the low-diversity of the ostracod assemblage as previously 310 

documented from the Mussafah Channel (Stewart et al., 2011) as these ponds are known to have 311 

high salinities today. 312 

Previous studies have hypothesised that the cetacean was emplaced into a tidal channel (Stewart et 313 

al., 2011; Strohmenger et al., 2010). However, we do not support this interpretation for the 314 

following reasons: 1) Tidal channels typically concentrate water flow during the ebb tide; therefore 315 

they are a focus of off-shore transport. As such, it is unlikely that, once emplaced, a carcass would 316 

remain for very long in such a setting. 2) Tidal channels are high-energy features, typically with 317 

erosive bases. There is no evidence of an erosive base at the whale excavation site. 3) The high 318 

energies that are typical of tidal channels would rapidly disarticulate the skeleton and transport the 319 

smaller bones, such as the phalanges, offshore. 4) The presence of coarse-grained bioclastic material 320 

banked against the bones is unlikely to occur in a tidal channel where such material is easily 321 

transported off-shore. 5) Any hard substrates in channels are heavily encrusted by marine benthos 322 

yet only the lowermost portions of the skeleton were encrusted.  323 

The remarkably planar surface of the hardground in the Mussafah Channel (Fig. 4) has previously 324 

been interpreted as a possible aeolian erosional feature in which the surface of the hardground was 325 
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wind-planed (Kirkham, 1998). However, as some of the cetacean bones clearly penetrate, and are 326 

cemented within, the hardground this interpretation is deemed to be unlikely, as such an intense 327 

process would have caused significant abrasion and, weathering of the skeleton.  328 

The excellent state of preservation and relatively complete articulation of the bones is consistent 329 

with relatively rapid burial following emplacement. The stratigraphic sequence overlying the 330 

hardground, and containing the cetacean skeleton, exhibits an overall fining-upward trend (Figs 2 331 

and 5) that implies a reduction in energy regimes consistent with deepening of the 332 

palaeoenvironment during continued transgression. This subtidal sequence differs significantly from 333 

the progradational sedimentary sequence described previously from elsewhere in the Abu Dhabi 334 

sabkha (Evans et al., 1969; Kirkham, 1998; Lokier and Steuber, 2008). Of particular interest is the lack 335 

of a microbial mat horizon at the contact between the carbonate-dominated intertidal sediments 336 

and the overlying supratidal evaporite-dominated units in the Mussafah Channel section. As 337 

mentioned previously, microbial mats demark the uppermost intertidal zone and, during 338 

progradation, are likely to be preserved, even following shallow burial, on entering the supratidal 339 

environment. Their absence from the Mussafah Channel section is consistent with a rapid fall in sea 340 

level resulting in rapid progradation of the shoreline without allowing sufficient time for significant 341 

microbial mat development. The succeeding, laterally discontinuous, peloidal and skeletal muddy 342 

sand horizons are inferred to represent the abandonment of storm-surge emplaced beach ridges 343 

during this regression. The uppermost unit in the sequence records the displacive growth of gypsum, 344 

and near-surface anhydrite, in a supratidal sabkha setting. 345 

The bioclast-rich sandy gravels banked against the bones are inferred to have been transported and 346 

deposited during storm surges. The accumulation of coarse-grained sediments against obstructions 347 

is a common feature in the intertidal zone of the Recent sabkha of Abu Dhabi. As these bioclasts are 348 

transported and are, thus, not in situ, they can not be directly employed in the palaeoenvironmental 349 

analysis of the depositional environment of the skeleton. However, the diverse assemblage, as 350 
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documented by Stewart et al. (2011) is consistent with the range of environments, from hypersaline 351 

intertidal to less-saline shallow subtidal settings associated with the Recent coastline of Abu Dhabi.  352 

The thin sub-vertical burrows observed in the subtidal sequence have previously been interpreted as 353 

rootlets produced by seagrass and, as such, have been posited as evidence of a lagoonal 354 

environment (Strohmenger et al., 2010). These features are, in fact, the mm-diameter, mucus-lined 355 

burrows of an arthropod of the class arachnida. This mite produces identical burrows in the 356 

supratidal zone of the Recent Abu Dhabi sabkha. As these burrows cross-cut stratigraphy they are 357 

not strictly diagnostic of the facies in which they occur. 358 

A siliciclastic component is relatively common within the Recent sediments of the Abu Dhabi 359 

shoreline. This material is primarily derived from subaerially-exposed erosional remnants of the 360 

middle-late Pleistocene Ghayathi Formation in the supratidal zone and generally reduces in 361 

abundance distally into the lower intertidal to subtidal zone (Lokier et al., 2013). The lack of 362 

siliciclastic material in the units associated with, and immediately overlying, the skeleton (Fig. 5) is 363 

consistent with deposition in a setting at some distance from the supratidal zone. 364 

The laterally-continuous iron oxide-stained horizons (Fig. 2) have previously been interpreted as 365 

marking the positions of a fluctuating groundwater table (Kirkham, 1998).  366 

The skeleton’s location in relation to the present day coastline infers a minimum progradation of the 367 

coast of 8.3 km since the whale was deposited, this equates to a progradation rate of between 1.56-368 

1.81 m/yr. This progradation rate lies within the range of 1.5-2 m/yr proposed from previous studies 369 

of the sabkha system (Kenig, 1991; Kinsman and Park, 1976; Patterson and Kinsman, 1977; Warren, 370 

2006) but is significantly higher than an average rate of 0.75 m/yr as previously proposed for the 371 

more recent, post 1.4 ka, seaward portion of the sabkha system (Lokier and Steuber, 2008). This 372 

disparity is consistent with the slowing of progradation rates over time, implying rates exceeding 373 
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1.81 m/yr prior to 1.4 ka. A rapid fall in sea level resulted in forced regression that was followed by 374 

normal progradation as sea levels stabilised at a lower level (Fig. 6). 375 

 376 

Implications for mid- to late Holocene relative sea level  377 

The sedimentary sequence observed at the Mussafah Channel is interpreted in the context of a 378 

whale beaching event as a complete parasequence recording a single flooding episode followed by a 379 

relative sea level fall. As mentioned previously, the microbial mat belt in the Recent Abu Dhabi 380 

sabkha is constrained to the landward limit of the intertidal zone, and is therefore effectively a 381 

datum recording the height of mean higher high water (MHHW). We can assume that the buried, 382 

ancient, microbial mat observed in the Mussafah Channel stratigraphic section was developed in a 383 

similar environment and, thus, records MHHW at the time of microbial mat growth. Today, the 384 

height of MHHW for the Umm Al Nar tide gauge (Fig. 1) is 1.64 m (Mohamed, 2008). The ancient 385 

microbial mat at the Mussafah Channel section lies at 1.85 m above chart datum, it can therefore be 386 

inferred that sea levels were 20 cm higher than today at 7103-6887 cal yr BP (Fig. 6). The effect of 387 

post-depositional compaction on a sedimentary section of approximately 1 m thickness would be 388 

negligible (Brain et al., 2012), however, it remains possible that the actual sea level was slightly in 389 

excess of 20 cm.  390 

The succession of the microbial mat by a hardground horizon records a retrogradational geometry 391 

during continued flooding from 6887-6567 cal yr BP, with an additional 1.1 m of carbonate and 392 

evaporite sediments being deposited above the microbial mat (Fig. 2). In peritidal carbonate settings 393 

it has been inferred that accommodation space will be completely infilled by sediments (Fischer, 394 

1964) however recent research has called this traditional ‘accommodation filling’ view into doubt 395 

(Boss and Rasmussen, 1995; Eberli, 2013; Wilkinson et al., 1997). It is now recognised that 396 

accommodation space is filled irregularly, this is due to the off-bank transport of carbonate material 397 
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by tides, wave currents and storms (Eberli, 2013). Given these factors, along with the unknown 398 

degree of compaction, it is unlikely that the 1.3 m of section that lies above current MHHW 399 

accurately records the true amplitude of the late Holocene sea level highstand. Instead, this figure 400 

should be considered as a minimum value for the highstand (Fig. 6).  401 

A further complicating factor in estimating the amplitude of the late Holocene highstand is the 402 

displacive growth of evaporite minerals in the sedimentary column. In the Mussafah Channel setting, 403 

between 26 to 34 cm thickness of evaporite-dominated sediments are recorded (Figs 2 & 5). These 404 

units have developed through displacive interstitial growth in the supratidal setting and have 405 

therefore increased the thickness of the sediment pile by approximately 30 cm. A final complicating 406 

factor in estimating the late Holocene highstand is that, following sea level fall, after 5285-4574 cal 407 

yr BP, it is likely that the sediment pile was deflated to within 50 cm of the groundwater table, as is 408 

observed in the Abu Dhabi sabkha today. 409 

Previous dates for the timing of the late Holocene highstand at the Abu Dhabi shoreline have varied 410 

widely. The transgressive phase has been dated as exceeding current sea levels at between 7000 - 411 

6000 BP (Evans et al., 1969; Lambeck, 1996) and reaching a maximum of 1-2 m above current sea 412 

level (Evans et al., 1973; Kenig, 1991; Lambeck, 1996; Uchupi et al., 1996; Williams and Walkden, 413 

2002) by between 6000-3400 BP (Evans et al., 1973; Evans et al., 1969; Kenig, 1991; Uchupi et al., 414 

1996; Williams and Walkden, 2002). Sea level fall has been dated as commencing between 4500- 415 

2300 BP (Evans et al., 1969; Uchupi et al., 1996; Williams and Walkden, 2002) and reached current 416 

levels by 1600-1000 BP (Kenig, 1991; Uchupi et al., 1996). The large discrepancies between these 417 

dates may be attributed to the wide variety of material selected for radiocarbon dating. Many of the 418 

studies employed bulk sediment samples or the shells of detrital feeding organisms as the source of 419 

carbon, both of which are inherently unreliable for dating. A further source of error is that none of 420 

these studies undertook a calibration of the radiocarbon ages in order to take account of the marine 421 

reservoir effect.  422 
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An additional complication to the Quaternary history of the Persian Gulf has recently been 423 

introduced by Wood et al. (2012) who have proposed a tectonic uplift of 125 m over the last 18 ka, 424 

with current uplift rates of 1 mm/yr. Given that the relief of the Mussafah Channel microbial mat is 425 

akin to present day MHHW, such a rate of tectonic uplift would necessitate a eustatic sea level rise 426 

of 7 m over the past 7,000 years with a stillstand in the shoreline of the Persian Gulf over this period 427 

– a hypothesis that clearly is not supported by any observational evidence, both in this study and 428 

elsewhere. Thus, our observations support the hypothesis that the southern shore of the Persian 429 

Gulf has been tectonically stable throughout the late Quaternary (Stevens et al., 2014). 430 

In conclusion, the mid- to late Holocene sea level highstand surpassed present day sea level at 7100-431 

6890 cal yr BP and reached a minimum amplitude of 1 m above current sea level (Fig. 6). 432 

Unfortunately, due to a lag in sediment deposition and the effects of deflation, it is not possible to 433 

constrain the upper limit or the exact timing of this sea level peak other than stating that this must 434 

have occurred after 5290-4570 cal yr BP. On the basis of previous observations of the progradational 435 

sabkha sequence (Lokier and Steuber, 2008) it is inferred that sea level had fallen to near current 436 

levels by 1440-1170 cal yr BP. 437 

 438 

Regional and global context 439 

The new results from the United Arab Emirates place accurate constraints as to the timing of the 440 

transgressive, highstand and regressive episodes associated with the mid- to late Holocene sea level 441 

high, both in the context of the Persian Gulf and at a broader, global, perspective.  Although the 442 

timing and elevation of the Holocene highstand has been reported as varying both spatially and 443 

temporally (Murray-Wallace, 2007) these new results are comparable to those observed elsewhere 444 

throughout the Indian Ocean region (Table 5) (Horton et al., 2005; Kench et al., 2009; Ramsay, 1996; 445 

Ranasinghe et al., 2013; Woodroffe and Horton, 2005). Small disparities in the timing (on the scale of 446 
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a few hundreds of years) and amplitude (by up to +2 m) of the highstand between these areas are 447 

inferred to result from hydro-isostatic effects and mantle rheology (Milne et al., 2009; Stattegger et 448 

al., 2013; Woodroffe and Horton, 2005). 449 

These new limits as to the timing of the mid- to late Holocene sea level highstand in the Persian Gulf 450 

also compares favourably with previously proposed, though, often, less well-constrained, dates for 451 

the transgressive and regressive phases from SE Asia (Chappell and Polach, 1991; Geyh et al., 1979; 452 

Scoffin and Le Tissier, 1998; Stattegger et al., 2013; Tjia, 1996; Woodroffe and McLean, 1990; Yim 453 

and Huang, 2002), Australia (Baker and Haworth, 2000; Baker et al., 2001; Beaman et al., 1994; 454 

Collins et al., 2006; Flood and Frankel, 1989), the Pacific (Grossman et al., 1998; Nunn and Peltier, 455 

2001) and the Atlantic (Angulo et al., 2006; Bourrouilh-Le Jan, 2007; Compton, 2001; Gayes et al., 456 

1992; van Soelen et al., 2010) regions (Table 5).  457 

Many of these previous studies have been unable to decouple proposed eustatic sea level changes 458 

from the signature of local and far field tectonic adjustments (Milne et al., 2009). The tectonically 459 

stable southern shoreline of the Persian Gulf (Stevens et al., 2014) has not been affected either by 460 

glacio-isostatic adjustment or by the far field effects of isostatic loading. We are therefore able to 461 

confidentially establish that the mid- to late Holocene sea level history of the Persian Gulf is driven 462 

by eustatic sea level without any influence from regional tectonic events. 463 

 464 

Conclusions 465 

The data from this study refine our knowledge of the timing of the transgression and regression 466 

phases associated with the global mid- to late Holocene sea level highstand. We establish that mid-467 

Holocene transgression exceeded present day sea level by 7100-6890 cal yr BP with a highstand of > 468 

1 m above current seal level being reached shortly after 5290-4570 cal yr BP. Subsequent relative 469 
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sea level fall had attained current datum by 1440-1170 cal yr BP. These new dates allow us to hone 470 

previously-defined dates for the mid- to late Holocene sea level highstand from other regions, 471 

thereby constraining the timing of this correlatable global eustatic event. 472 

The Mussafah Channel cetacean was emplaced during the mid-Holocene transgressive phase, being 473 

beached between 5300-4960 cal yr BP into an intertidal hardground pond. Paleoenvironmental 474 

regimes in this setting, in terms of temperature, salinity and energy, are inferred to have been akin 475 

to those observed at the coastline of Abu Dhabi today. Continued transgression saw the burial of the 476 

skeleton within shallow-subtidal sediments before the relative sea level fall resulted in a forced 477 

regression and a consequent rapid progradation in facies. We infer that the southern shoreline of 478 

the Persian Gulf was tectonically stable at this time with relative sea level being driven by global 479 

eustasy. 480 

This study also illustrates the potential pitfalls of applying  optically stimulated luminescence dating 481 

techniques in isolation within sabkha environments. In arid coastal environments a high evaporation 482 

rate in association with fluctuating saline groundwater levels may result in leaching and 483 

concentration of uranium and potassium with consequent post-burial modifications of the 484 

environmental radiation dose. Thus, measured elemental concentrations may not reflect the 485 

average concentrations during the burial history of the sediments. This finding has important 486 

implications for studies in similar settings where optically stimulated luminescence may be 487 

employed as the sole dating method. 488 
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Table 1



Sample Name 
Laboratory 

Sample code 
Nature of sample 

Radiocarbon 
Age (14C yr BP) 

AMS 
δ13C (‰) 

Calibrated Age Range 
(2 σ) (cal yr BP) 

MC02 UB16441 Bivalve shell from hardground 6452 ± 32 1 6887 - 6567 

MUS 17B UB16449 Bone Undetermined 
  

MUS 28/01/08 UB16450 Barnacle Coronula diadema from close to left scapula 5032 ± 30 -4.7 5304 - 4957 

MUS 09 110.M UB16451 Articulated bivalve Barbatia from material next to vertebrae 4743 ± 27 -1.5 4914 - 4574 

MUS 11 UB16452 Barbatia shell from orange shelly layer banked against skull 5002 ± 29 -0.8 5285 - 4922 

Note: Calibration utilised the CALIB (version 7.0.0) (Stuvier and Reimer, 1993) to 2 sigma employing a marine calibration curve and a regional 
reservoir age correction (∆R) of 180 ± 53 derived from a sample of known age collected within the Persian Gulf to the east of Qatar (Hughen et al., 
2004). 

 

Table 2



Sample 
Laboratory 

code  
Depth 
(cm) 

Palaeodose 
(De) (Gy) 

Dose rate 
(µGy/a-1) 

OSL age 
(ka BP) 

MUS OSL 1a Shfd11039 137 4.05 ± 0.23 1275 ± 63 3.18 ± 0.24 

MUS OSL 2a Shfd11040 98 2.47 ±0.08 884 ± 46 2.79 ± 0.17 

MUS OSL 3a Shfd11041 68 2.40 ± 0.07 955 ± 47 2.51 ± 0.14 

      Adjusted for potential dose-rate problems (see text for details) 

MUS OSL 1a Shfd11039 137 4.05 ± 0.23 675 ± 32 6.00 ± 0.45 

MUS OSL 2a Shfd11040 98 2.47 ±0.08 365 ± 14 6.76 ± 0.34 

MUS OSL 3a Shfd11041 68 2.40 ± 0.07 452 ± 18 5.31 ± 0.27 

   
   

 
Note: Ages are presented at 1 sigma confidence incorporating systematic uncertainties with the 
dosimetry data, uncertainties with palaeomoisture and errors associated with De determination.  
 

Table 3



Sample name Nature of sample δ13C 
(‰V-PDB) 

δ18O 
(‰V-PDB) 

Calculated 
temperature 

(°C) 

MUS09 110.M Articulated bivalve Barbatia from next to whale 1.65 2.34 22.6 

MUS09 148.M Articulated bivalve Pinctada from next to whale 1.37 1.16 27.7 

MUS09 183.M Articulated bivalve Pinctada from next to whale 2.22 0.51 30.5 

 

Table 4



Location 
Transgression 
past present 

sea level 
Highstand 

Regression to 
present sea 

level 

Maximum sea 
level (+m)  

Author 

Indian Ocean      

Malay-Thai Peninsula  4850-4450 cal yr BP  5 Horton et al., 2005 

Mozambique 6500 BP 4480 BP 900 BP 2.75 Ramsay, 1995 

Maldives 4500 cal yr BP 4000-2100 cal yr BP  >0.5 ±1 Kench et al., 2009 

Sri Lanka  4900-4000 BP 3000 BP  Ranasinghe et al., 2013 

SE Asia      

Papua New Guinea  5800 14C yrs BP   Chappell and Polach, 1991 

Strait of Malacca  4980 14C yrs BP  5 Geyh et al., 1979 

Cocos Islands  after 3000 14C yrs BP  >0.5 Woodroffe and McLean, 1990 

Phuket, Thailand  6000 BP  1 Scoffin and Le Tissier, 1998 

S. China  5140 ±50 yr BP  <2 Yim and Huang, 2002 

Thai-Malay Peninsula 6 ka 5 ka 
1.5 ka 

(Thailand) 
5 Tjia, 1996 

Vietnam  6.7-5 ka  1.4-1.6 Stattegger et al., 2013 

Australia      

W Australia  5660 ±50-4040 ±50  14C yrs BP  1.65 Beaman et al., 1994 

E Australia  3420-1780 BP  >1 Flood and Frankel, 1989 

E Australia  4150-3470 BP  1.7 Baker and Haworth, 2000 

S Australia  5100 BP  2.2 Baker et al., 2000 

SW Australia  7 ka  2 Collins et al., 2006 

Pacific      

Central Equatorial Pacific  5000-1500 BP  1-2 Grossman et al., 1998 

Fiji Islands 
before 6900 14C 

yrs BP 
5650-3200 14C yrs BP  1.35-1.5 Nunn and Peltier, 2001 

Atlantic      

S Carolina, USA  4.2 ka   Gayes et al., 1992 

Florida, USA 7.5 ka    Van Soelen et al., 2010 

South Africa  6.8 ka 4.9 ka 0-3 Compton, 2001 

Brazil 
7550-6500 cal yr 

BP 
5800-2000 cal yr BP  2-3 Angulo et al., 2006 

Bahamas  3000 BP  1.5 Bourrouilh-Le Jan, 2007 
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