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The within-day and between-day reliability of using sacral accelerations to quantify balance 

performance 

 

Objectives: To investigate the between-day and within-day reliability of a sacral mounted 

accelerometer to quantify balance performance and different balance metrics.  

Design: Experimental, cross-sectional. 

Setting: Laboratorial experiment.  

Participants: Thirty healthy volunteers.  

Main outcome measures: Balance tasks were double leg stance, tandem stance and single 

leg stance with eyes open and closed. Performance was measured by converting 

accelerations into path length (PL, length of the sway trace), jerk (jerkiness of sway trace) 

and root mean square (RMS) of the accelerations.  

Results: Within-day ICC for PL were excellent (mean 0.78 95%CI  0.68-0.89), with Jerk and 

RMS demonstrating means of 0.60 and 0.47 respectively. The mean percentage minimal 

detectable change (MDC) within-day were small for PL (mean 6.7%, 95%CI 5.3-8.1). 

Between-day ICC were good for PL (mean 0.61, 95%CI  0.50-0.71), but more varied for Jerk 

and RMS. The mean percentage MDC was small for PL (mean 6.1%, 95%CI 5.0-7.2). No 

significant differences were determined for measurements between-days for any metric or 

task. PL had the highest discriminatory value between the 8 tasks. 

Conclusions: The sacral mounted accelerometer reliably measured balance performance 

within- and between-days. The PL is the recommended metric as it was the most reliable, 

most discriminatory and most sensitive to change.  
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1. Introduction 

Balance measurement has traditionally focused on the determination of postural sway quantified by 

tracking the trajectory of the centre of pressure (COP). This commonly requires the use of expensive 

laboratory mounted force plates (Mancini et al., 2012). Clinicians often measure balance using crude 

measures such as time spent on one leg or star excursion balance test (O’Sullivan et al., 2009; 

Coughlan et al., 2013). These measures provide limited detail about the quality of performance. 

Clinicians are therefore faced with a challenge of obtaining detailed objective information regarding 

balance performance without being constrained to a laboratory environment.  

Body mounted sensors, such as accelerometers, have been suggested as an alternative balance 

measurement method (Moe-Nilssen 1998a; Moe Nilssen 1998b; Moe-Nilssen & Helbostad 2002). 

These sensors are capable of measuring linear acceleration along each sensing axis and when 

attached close to the body’s centre of mass (COM) have the ability to measure acceleration of the 

body’s COM. This has been suggested as a viable method to quantify balance (Moe-Nilssen 1998). 

Studies comparing the traditional force plate measures with the accelerometer method have shown 

promising results. However the two methods measure balance in unique ways. Force plates are 

usually employed to measure the behaviour of the COP, which represents the point location of the 

vertical ground reaction force vector (Winter 1995). However changes in COP do not always 

correspond to change in the position of the body’s COM (Winter 1995). Accelerometers, on the 

other hand, measure acceleration of the COM and therefore describe the body’s attempt to control 

movement of the COM (Adlerton & Moe-Nilssen 2003). As the two devices measure different 

metrics they are not necessarily interchangeable, however the correlation of the attempts to 

maintain balance are good (Mayagoitia et al., 2002; Whitney et al., 2011; Mancini et al., 2012). 

Therefore it may be possible to obtain sway signatures using the accelerometer method which has 

distinct advantages over the force plate method for the clinician being smaller, cheaper and not 

constrained to a specific environment.  

There are a few technical issues around the use of accelerometers for measuring postural sway. 

Body-worn sensors are unlikely to be mounted perfectly to the horizontal and vertical resulting in an 

element of sensor tilt. This tilt affects the output of the accelerometer as acceleration due to gravity 

is an intrinsic component of the sensor output. This aspect needs addressing in order to resolve the 

true accelerations. This can be overcome by registering the degree of tilt of the sensor and using this 

to remove the gravity component of the sensor output. This method has been successfully applied in 

previous research involving accelerometers (Moe-Nilssen 1998a; Morgado-Ramirez et al., 2013; 

Williams & Cuesta-Vargas 2014) and accelerometers have successfully been used to quantify balance 

in older persons who fall (Doheny et al., 2012), children with dyslexia (Moe-Nilssen et al., 2003) and 

those with Huntington’s disease (Dalton et al., 2013), Parkinson’s disease (Mancini et al., 2011) and 

Vestibular disorders (Marchetti et al., 2013).  

More recently these devices have been designed so that data is presented in a usable format for 

clinicians and as such could be used in every day practice. However, there is still a requirement to 

explore the reliability of these devices. Test-retest reliability for various stance tasks, including 
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double leg stance (ICC 95% confidence interval (CI) = 0.35-0.89; Mancini et al., 2012), single leg 

stance (ICC 95%CI = 0.62-1; Moe-Nilssen 1998b) and tandem stance tasks (ICC 95% CI = 0.75-0.89) 

have been reported. These values represent the combination of biological (human) and equipment 

(sensor) variability and the spread of the confidence intervals demonstrate the inherently variability 

in human movement. Furthermore different specific metrics have been used to quantify 

performance from the acceleration data. Whitney et al (2011) demonstrated that the path length 

(PL), a measure of the length of the mediolateral acceleration data plotted against the 

anteroposterior acceleration data, was the most reliable measure across a range of balance tasks 

(ICC range 0.63-0.80). Mancini et al., (2012) also reported that PL was the most reliable balance 

performance metric however also suggested Jerk, the time derivative of acceleration, was reliable, a 

finding supported by Marchetti et al., (2013). In addition to PL and jerk previous authors have also 

reported the root mean square value (RMS) as a method of quantifying postural sway. Reliability 

estimates of 0.51-0.81 have been reported (Moe-Nilssen 1998b; Mancini et al., 2012) for double leg 

stance and single leg stance. It would appear that PL, Jerk and RMS are the most commonly reported 

metrics to quantify balance measured using an accelerometer, with previous studies demonstrating 

their reliability. Previous studies have not investigated these metrics across a wide range of balance 

tasks or investigated the between-day reliability of such a method. It is suggested that before such a 

method can be accepted in clinical practice a better understanding of the variability of repeated 

testing, within and between-day, is required along with the computation of the minimal detectable 

change (MDC). These values will then enable clinicians to interpret changes in balance performance 

to go beyond that expected from normal human variability. 

The aim of this study was to determine the within-day and between-day repeated measures 

reliability of a novel device for measuring balance within a clinical setting, along with the 

determination of minimal detectable change values across a series of balance tasks.  

 

2. Methods 

This study employed an experimental cross-sectional test re-test study design. 

2.1 Participants 

Thirty participants were recruited from the student population within Bournemouth University. All 

participants were free from any musculoskeletal or neurological disorders or any other conditions 

which may affect their balance. Bournemouth University ethics committee granted the study ethical 

approval and all participants provided informed written consent to participate in the study. Mean 

(sd) age was 28.8 (8.7) years, height 1.71 (0.1) m, weight 73.4 (15.3) kg and 18 were female. A 

smaller sample of seven was asked to return the following day to repeat the tasks and explore the 

between-day reliability (mean (sd) age 24.9 (4.8) years, height 1.75 (11.5) m, weight 75.0 (15.3) kg). 

This value was calculated by declaring an acceptable correlation coefficient of 0.75, with alpha as 

0.05 resulting in the required sample size, to achieve a power of 0.8, of 7 as calculated by Gpower 

(3.0). 

2.2 Instrumentation  
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A commercially available balance sensor (THETAmetrix, Waterlooville, Hampshire, UK) was used to 

quantify balance. The sensor’s dimensions were 73mm x 45mm x 19mm and weight 58 grams. The 

sensor houses a triaxial accelerometer and triaxial rate gyroscope which communicate wireless to a 

PC. The accelerometer measures linear acceleration along its sensing axes while the rate gyroscope 

quantifies rate of turn about its sensing axes. The company supplied software uses both sensing 

elements to overcome the limitations of using an accelerometer in isolation (outlined in the 

introduction), namely the dynamic correction for sensor tilt and removal of the gravity component 

of the signal. Therefore the software calculates orientation independent linear acceleration at 16Hz. 

With the sensor attached to the skin over the sacrum this acceleration data represents the small 

adjustments used to maintain balance i.e. the postural sway of the sacrum.  

2.3 Procedure  

Participants’ height (Seca 274 Stadiometer, Seca, UK) and weight (Seca 761 Mechanical Scales, Seca, 

UK) were measured and the balance sensor was attached to the skin over the spinous process of S2 

using double sided tape. This location was chosen as it is close to the centre of mass of the human 

body (Mancini et al., 2011; Whitney et al., 2011; Kim et al., 2013). All participants wore self-selected 

training shoes throughout as this reflects function and clinical practice. Eight balance tasks were 

completed, namely double leg stance, feet naturally apart with eyes open (DLSFNEO); double leg 

stance feet naturally apart with eyes closed (DLSFNEC); double leg stance, feet together with eyes 

open (DLSFTEO); double leg stance, feet together with eyes closed (DLSFTEC); tandem stance (right 

foot in front of the left) eyes open (TandEO); tandem stance eyes closed (TandEC); single leg stance 

with eyes open (SLSEO) and single leg stance with eyes closed (SLSEC). Participants were instructed 

to stand and maintain balance as best they can. Participants stood on a line positioned 2 m from the 

wall and asked to look at a wall marker 1.7m high during the eyes open tasks. The orders of the tests 

were randomised using opaque envelopes to minimise the potential effect of fatigue on 

performance. Each task was completed for 30 seconds and repeated 3 times with as much rest time 

as required by the participants between tests (typically 45s – 90s). If the participant shifted their feet 

during the task the data were discarded and trial repeated.   

2.4 Data Analysis 

Data were captured using the company provided balance sensor software. This converts the anterio-

posterior (AP) and medio-lateral (ML) linear accelerations into three specific metrics quantifying 

sway behaviour of the pelvis. The three metrics were path length (PL), jerk and root mean square 

(RMS). Path length computes the length of the sway path created by the AP and ML accelerations. 

The length of the path between each sequential data point for AP acceleration (sample (x+1) – 

sample x) is calculated and summed. This is repeated for ML acceleration and the total path length is 

the sum of the AP path length and the ML path length. It is measured in mg (where m stands for 

milli- and g for units of gravity). Jerk represents the jerkiness or ‘twitchiness’ of the movement of the 

pelvis in mg
2
/s (where m stands for milli-, g for units of gravity and s for seconds). It is computed by 

calculating the integral of the square of the gradient of acceleration and then normalised with respect 

to time. The total jerk is the sum of the jerk for AP accelerations and ML accelerations. RMS is the 

standard deviation of the acceleration-time series in mg (where m stands for milli- and g for units of 

gravity). These metrics were used to provide quantification of the balance performance for each task. 

An example of the output is presented in figure 1. All data were tested for normality using the 
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Shapiro-Wilk test and as the majority of data were not normally distributed non-parametric statistics 

were used throughout. Within-day repeated measures reliability was determined for the three trials 

using intra-class correlation coefficients (ICC 3, 1) and standard error of measurement (SEM) was 

calculated for each task (Rankin & Stokes 1998; Bruton et al., 2000). To aid clinical interpretation the 

minimal detectable change (MDC) was also computed and converted into a percentage of the 

median score to enable comparison. Significant differences between tasks were explored using 

Friedman’s test with post hoc Wilcoxon (bonferoni corrected) where appropriate. *** place figure 1 

about here *** 

Three trials of each task were completed on the follow-up day (>24 hours post initial measurements) 

from which between day reliability was determined using the mean of the three measurements 

across the two days to compute an ICC (3, k) (Rankin & Stokes 1998). Additional SEM and percentage 

MDC for between day measurements were also calculated. Significant differences were explored 

between day 1 and day 2 measurements using Friedman’s with post hoc Wilcoxon (Bonferoni 

corrected) and effect size calculations where appropriate.  

  

3. Results 

The median values and SEM for each balance metric during each task is presented in table 1.  

3.1 Within day reliability 

The ICC values ranges from poor to excellent across the different tasks and metrics. The PL 

consistently demonstrated the greatest ICC across all tasks with mean 0.78 and 95%CI 0.68 - 0.89 

(table 1). RMS demonstrated moderate to good ICC values with mean 0.60 and 95%CI 0.47-0.72. Jerk 

consistently demonstrated the lowest ICCs across all tasks with a mean of 0.47 and 95% confidence 

interval of 0.28 – 0.66 (table 1).  

The percentage MDCs were low for PL (mean 6.7; 95%CI 5.3-8.1) and significantly higher for JERK 

and RMS. These results suggest that PL represents a measure that is more sensitive to detect change 

in performance than Jerk or RMS.   

There were significant differences between the balance tasks for PL (χ
2
 = 513.3, p < 0.01). Post hoc 

analysis using Wilcoxon sign rank tests (with Bonferoni correction) showed significant differences 

between TandEO and all others; TandEC and all others; SLSEO and all others; SLSEC and all others, as 

well as DLSFNEO and DLSFTEC; DLSFNEC and DLSFTEC for PL (figure 2a). There were significant 

differences between tasks for Jerk (χ
2
 = 396.1, p < 0.01). Post hoc analysis showed significant 

differences between TandEO, TandEC, SLSEO and SLSEC and all other tasks (figure 2b). There were 

significant differences between tasks for RMS (χ
2
 = 177.4, p < 0.01). Post hoc analysis showed 

significant differences between TandEO and all other tasks except DLSFTEO and SLSEO; TandEC and 

all other tasks; SLSEO and all other task except DLSFTEO and TandEO; SLSEC and all other tasks 

(figure 2c). These results indicate that the double leg stance tasks differ little in the actual resultant 

metrics suggesting they challenge balance to a similar amount. Tandem stance tasks and single leg 

stance tasks yield significantly different results therefore provides a unique degree of balance 

challenge. These results also demonstrate that PL is more sensitive in discriminating between 

different balance tasks. *** place table 1 about here ***  *** place figure 2 about here *** 
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3.2 Between-day reliability 

The ICC values ranged from poor to excellent across the different tasks and metrics (table 2). The PL 

consistently demonstrated the greatest ICC across tasks with mean 0.61 and 95% CI 0.50 - 0.71.  Jerk 

and RMS displayed much greater variability across tasks with mean ICC 0.33 with 95% CI 0.09 – 0.58 

and 0.35 with 95% CI 0.17 – 0.52 respectively (table 2). Greatest between day reliability was 

determined for the SLSEC task across all metrics demonstrating that despite this task being the most 

challenging it was also the most consistent (table 2).  

The percentage MDC values were small especially for PL (mean 6.1; 95%CI 5.0 – 7.2). The SLSEO 

presented the smallest percentage MDC value, demonstrating that this task may be the most 

sensitive to detect change across days.   

Using a Bonferoni corrected alpha value of 0.007 there were no significant differences between day 

1 and day 2 measurements for any of the tasks or variables (PL p = 0.11 – 1.0; jerk p = 0.05 – 1.0; 

RMS p = 0.03 – 1.0).  

 

4. Discussion 

The aim of this study was to determine the reliability of a balance sensor based on accelerometry as 

well as obtain MDCs and explore differences between balance tasks. Previous studies have 

suggested the use of accelerometers to measure balance, however previous studies have not 

explored the range of tasks, between-day reliability or MDCs as in this study.  

The within-day repeated measures reliability results from this study suggest that the balance sensor 

can be used with confidence as ICC values were generally good to excellent. Previous studies have 

used triaxial accelerometers (Moe-Nilssen 1998b), dual-axial accelerometers (Whitney et al., 2011) 

or an inertial sensor (Mancini et al., 2012) in their measurement of balance. Published studies using 

RMS have demonstrated ICCs of 0.16 – 0.71 for DLSFNEO (Moe-Nilssen 1998b; Whitney et al., 2011, 

Mancini et al., 2012), 0.46 - 0.52 for DLSFNEC (Moe-Nilssen 1998b; Whitney et al., 2011) and 0.81 for 

SLSEO (Moe-Nilssen 1998b). As with the current study greater reliability has been reported for PL 

ranging from 0.72 – 0.89 for DLSFNEO and 0.72 for DLSFNEC (Whitney et al., 2011; Mancini et al., 

2012). Therefore the results of the current study are in agreement with those previously reported 

and the findings for the functional tasks not previously studied are also similar.  However, like those 

previous studies not all metrics in the current study performed the same. Total PL demonstrated the 

greatest reliability and smallest MDC, outperforming the other metrics significantly. The MDC is an 

important metric for clinicians to use (Donoghue et al., 2009). This metric provides an outcome 

measure for an intervention, or may be used to track deterioration in a condition, such as recurrent 

ankle sprain or Diabetes. These results therefore suggest a change in total PL of 10% could be 

considered true clinical change as opposed to variability in task performance for any of the tasks 

measured in this study. Furthermore a change >5.6% for single leg stance task could be considered 

true change.  Other performance metrics (Jerk and RMS) showed more variability in the MDC values. 

It is therefore suggested that when using these metrics, attention should be paid to the individual 

scores for individual tasks, a finding supported in the literature (Whitney et al., 2011). 
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This is this first time data regarding performance of these tasks has been reported. Performance 

scores for a particular balance task could be compared the values in table 2 to determine level of 

balance function or impairment. This information can then in-turn guide clinical decision making. 

Caution is advised as the sample in this study was limited to young healthy adults making 

extrapolation to other populations questionable. This study determined that some tasks yielded 

significantly different results to others aiding our understanding of the underlying constructs of the 

tasks. There were no differences in the DLSFN and DLSFT tasks for jerk and RMS, however there 

were differences for DLSFTEC using total PL. This suggests total PL had the greatest discriminatory 

ability, however the results may differ in those with balance impairments. The tasks of TandEO, 

TandEC, SLSEO and SLSEC resulted in a different score from each other and all other tasks, 

suggesting that these tasks explore a unique level of balance challenge and could be considered 

important in a battery of balance testing. Conversely as little differences between the double leg 

stance tasks were determined it is possible these tasks provide the same level of balance challenge, 

which in an unimpaired population, is minimal suggesting that the inclusion of all these tasks may be 

unnecessary. However the level of balance challenge and subsequent results may differ in those 

with balance impairments. 

The between day reliability results show poorer ICC scores suggesting less consistency across the 

two days. The PL again demonstrates greater between day reliability with all ICC values greater than 

0.4, however the majority were around 0.6 or more. Some between day reliability scores were very 

low for jerk and RMS suggesting an unreliable metric and caution should be advised during their use. 

This is the first time that between day reliability of accelerometery for balance measurement has 

been reported and represents a novel finding in the literature. In order to determine if a 

measurement method has sufficient reliability, exploration beyond the ICC is required. Indeed if 

there is a lack of range in the values reported or put another way, results from all participants are 

clustered together, the ICC will be artificially low (Moe-Nilssen 1998b), therefore it may be more 

clinically meaningful to use the MDC values to determine if the measurement is ‘reliable enough’ for 

a specific application. The between day percentage MDC values were very small for PL suggesting 

that clinicians could be confident with changes in performance of >7% represent true change across 

days. The same was not found for jerk and RMS where much greater changes would be necessary to 

denote true change.  

The current study outlines the use of a quick and simple method for objectively measuring balance. 

Attachment of the device takes less than a minute and the software produces an immediate report 

detailing the individual’s performance making the quantification of balance quick and easy. A sacral 

mounted balance sensor enables immediate assessment of balance in any environment, removing 

the reliance on expensive laboratory systems. Other platform based systems have limitations 

regarding footwear, such as studs or cleats, whereas a sacral mounted sensor could quickly quantify 

the athletes balance pitch-side, for example in response to head injury. It is believed that as therapy 

and rehabilitation continue to evolve to demand greater objectivity and more specific outcome 

measures, such instrumentation is well placed to fulfil that need. It is recommended that the PL total 

be used by clinicians as a single score from which to quantify balance as this has shown to offer the 

greatest within-day and between-day reliability, best discriminatory ability and lowest MDC making 

it the most sensitive to change.  
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This study was limited to young healthy individuals therefore the results in different populations are 

likely to be different. All tasks were designed to test static balance and as such results will differ for 

more dynamic balance tasks. Results will also differ for functional tasks which were not explored in 

the current study. Participants in this study used their own shoes therefore results may not reflect 

performance barefoot.  It is also important to note that sacral accelerometry cannot take into 

consideration the influence of muscle and the effects muscle contraction can have on the centre of 

pressure. Therefore it is recognised that the measurement of centre of pressure and measurement 

of acceleration of the pelvis are not the same.   

5. Conclusion 

This study demonstrates that a sacral mounted balance sensor can reliably measure postural sway 

across a range of balance tasks, both within day and between days. Tandem stance and single leg 

stance tasks produce significantly different scores to the other tasks and should be included in future 

balance testing. The PL is the most reliable metric of balance function and has the lowest minimal 

detectable change values making it the most sensitive to change. It is recommended that PL be used 

as the key variable for clinical assessment of balance using a balance sensor as described in this 

study.   
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Figure Captions 

Figure 1. Example output from balance sensor.  

Figure 2. Median Path Length (mg) (a); Jerk (mg
2
/s)(b); Root Mean Square (mg) (c) values for each 

task with results of significance testing. DLSFNEO, double leg stance feet natural eyes open; 

DLSFNEC, double leg stance feet natural eyes closed; DLSFTEO, double leg stance feet together eyes 

open; DLSFTEC, double leg stance feet together eyes closed; TandEO, Tandem stance eyes open; 

TandEC, Tandem stance eyes closed; SLSEO, Single leg stance eyes open; SLSEC, Single leg stance 

eyes closed; PL, path length.  
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Table 1. Median scores for PL, jerk and RMS for each balance task and within day reliability and percentage minimal detectable change. 

Task PL (mg) Jerk (mg
2
/s) RMS (mg) 

DLSFNEO Median 141.1 5.8 3.3 

 ICC 0.85 0.61 0.74 

 SEM 8.3 7.2 0.7 

 %MDC 5.7 128.3 72.5 

DLSFNEC Median 142.1 6.1 2.9 

 ICC 0.88 0.48 0.77 

 SEM 6.8 13.5 1.0 

 %MDC 5.1 167.0 96.1 

DLSFTEO Median 150.7 7.6 4.1 

 ICC 0.44 0.09 0.42 

 SEM 31.9 18.6 1.7 

 %MDC 10.4 157.2 88.2 

DLSFTEC Median 156.0 8.3 3.5 

 ICC 0.90 0.59 0.77 

 SEM 8.1 6.0 0.9 

 %MDC 5.1 81.9 75.9 

TandEO Median 189.3 11.5 4.2 

 ICC 0.69 0.03 0.26 

 SEM 27.3 74.9 3.3 

 %MDC 7.7 208.6 120.7 

TandEC Median 338.6 26.2 5.6 

 ICC 0.85 0.73 0.52 

 SEM 111.5 66.9 1.6 

 %MDC 8.6 86.5 62.3 

SLSEO Median 247.5 17.3 4.8 

 ICC 0.84 0.52 0.67 

 SEM 23.8 15.6 1.3 

 %MDC 5.5 63.3 66.1 

SLSEC Median 766.5 133.8 6.6 

 ICC 0.80 0.73 0.63 

 SEM 244.1 229.2 2.5 

 %MDC 5.6 31.4 66.3 

DLSFNEO, double leg stance feet natural eyes open; DLSFNEC, double leg stance feet natural eyes closed; DLSFTEO, double leg stance feet together eyes open; 

DLSFTEC, double leg stance feet together eyes closed; TandEO, Tandem stance eyes open; TandEC, Tandem stance eyes closed; SLSEO, Single leg stance eyes 

open; SLSEC, Single leg stance eyes closed; PL, path length; RMS, root mean squared; ICC, intraclass correlation coefficient; SEM, standard error of 

measurement; MDC, minimal detectable change.  
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Table 2. Absolute mean difference (sd) between participants day one and day two for each of the tasks with 

between day ICC, SEM and percentage MDC values.  

Task PL (mg) Jerk (mg
2
/s) RMS (mg) 

DLSFNEO AbsMeanDiff 26.2 15.9 1.2 

 sd 20.3 30.6 1.3 

 ICC 0.44 0.27 0.36 

 SEM 15.2 26.1 1.0 

 %MDC 7.0 206.4 86.7 

 Effect size 0.52 0.41 0.53 

DLSFNEC AbsMeanDiff 18.2 7.0 1.3 

 Sd 17.9 7.4 1.1 

 ICC 0.57 0.21 0.15 

 SEM 11.8 6.6 1.0 

 %MDC 6.7 86.6 72.8 

 Effect size 0.54 0.80 0.89 

DLSFTEO AbsMeanDiff 29.3 6.1 0.9 

 Sd 32.0 6.9 0.6 

 ICC 0.57 0.43 0.61 

 SEM 20.9 5.2 0.4 

 %MDC 8.2 66.8 37.9 

 Effect size 0.09 -0.07 0.09 

DLSFTEC AbsMeanDiff 21.9 28.9 1.5 

 Sd 16.6 38.8 0.9 

 ICC 0.57 0.07 0.45 

 SEM 10.8 37.4 0.7 

 %MDC 5.3 139.0 48.8 

 Effect size 0.09 0.34 0.10 

TandEO AbsMeanDiff 21.4 17.9 2.0 

 Sd 25.0 18.0 1.5 

 ICC 0.70 0.04 0.29 

 SEM 13.6 17.6 1.3 

 %MDC 6.1 122.5 32.5 

 Effect size -0.25 -0.28 -0.16 

TandEC AbsMeanDiff 66.2 22.1 1 

 Sd 74.6 28.1 0.8 

 ICC 0.43 0.02 0.03 

 SEM 56.5 27.9 0.78 

 %MDC 7.2 58.5 50.7 

 Effect size -0.20 -0.16 -0.46 

SLSEO AbsMeanDiff 27.1 5.1 1.5 

 Sd 13.8 6.4 1.1 

 ICC 0.80 0.69 0.15 

 SEM 6.2 3.5 1.0 

 %MDC 2.8 28.8 57.7 

 Effect size -0.02 0.23 0.35 

SLSEC AbsMeanDiff 201.4 117.9 2.6 

 Sd 286.9 108.1 3.7 

 ICC 0.77 0.95 0.71 

 SEM 137.2 25.2 2.0 

 %MDC 5.3 12.9 49.2 

 Effect size 0.08 0.11 0.42 

DLSFNEO, double leg stance feet natural eyes open; DLSFNEC, double leg stance feet natural eyes closed; DLSFTEO, 

double leg stance feet together eyes open; DLSFTEC, double leg stance feet together eyes closed; TandEO, Tandem 

stance eyes open; TandEC, Tandem stance eyes closed; SLSEO, Single leg stance eyes open; SLSEC, Single leg stance 

eyes closed; PL, path length; RMS, root mean squared; AbsMeanDiff, absolute mean difference between day one 

and day two; ICC, intraclass correlation coefficient; SEM, standard error of measurement; MDC, minimal detectable 

change; Sd, standard deviation. 
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Highlights 

 

Balance performance can be reliably measured using a sacral mounted balance sensor.  

This study recommends quantification of balance using path length (PL). 

Findings show changes in PL of more than 10% represents true change in performance.  




