
Quality Assessment of Deep-Learning-Based Image
Compression

Giuseppe Valenzise∗, Andrei Purica†, Vedad Hulusic‡, Marco Cagnazzo†
∗L2S, UMR 8506, CNRS - CentraleSupelec - Université Paris-Sud, 91192 Gif-sur-Yvette, France
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Abstract—Image compression standards rely on predictive cod-
ing, transform coding, quantization and entropy coding, in order
to achieve high compression performance. Very recently, deep
generative models have been used to optimize or replace some
of these operations, with very promising results. However, so far
no systematic and independent study of the coding performance
of these algorithms has been carried out. In this paper, for the
first time, we conduct a subjective evaluation of two recent deep-
learning-based image compression algorithms, comparing them
to JPEG 2000 and to the recent BPG image codec based on
HEVC Intra. We found that compression approaches based on
deep auto-encoders can achieve coding performance higher than
JPEG 2000, and sometimes as good as BPG. We also show
experimentally that the PSNR metric is to be avoided when
evaluating the visual quality of deep-learning-based methods, as
their artifacts have different characteristics from those of DCT
or wavelet-based codecs. In particular, images compressed at low
bitrate appear more natural than JPEG 2000 coded pictures,
according to a no-reference naturalness measure. Our study
indicates that deep generative models are likely to bring huge
innovation into the video coding arena in the coming years.

I. INTRODUCTION

Current image compression methods rely substantially on
transform coding: instead of searching for an optimal vector
quantizer in the pixel domain, which is a hard problem [1],
they transform the input data into an alternative representation,
where dependencies among pixels are greatly reduced and an
ensemble of independent scalar quantizers can be used. A
proper choice of the transformed domain is fundamental to
compact the energy of the signal into a few coefficients, and
to enable perceptual scaling. Traditionally, image compression
standards have been mainly employing linear representations,
such as the discrete cosine transform (DCT) [2], used in
block-based coding algorithms such as JPEG and in video
codecs such as H.264/AVC and HEVC, as well as wavelet
transforms [3], used in JPEG 2000. These representations are
optimal only under strong assumptions about the underlying
distribution of image data, e.g., local stationarity, smoothness
or piece-wise smoothness. Failure to meet these assumptions
is the cause of typical visual artifacts, such as ringing and blur.
More recent techniques, such as dictionary learning and sparse
coding [4], have shown that it is possible to build more flexible
representations by replacing a fixed transform by a non-linear
optimization process with a sparsity constraint. However, these
methods still represent the input data with linear combinations
of the dictionary atoms.

Recently proposed image compression algorithms based on
deep neural networks [5], [6], [7], [8], [9], [10] leverage
much more complex, and highly non-linear, generative models.
The goal of deep generative models is to learn the latent
data-generating distribution, based on a very large sample of
images. Specifically, a typical architecture consists in using
auto-encoders [11], [12], which are networks trained to re-
produce their input. The structure of an auto-encoder includes
an information bottleneck, i.e., one or more layers with fewer
elements than the input/output signals. This forces the auto-
encoder to keep only the most relevant features of the input,
producing a low-dimensional representation of the image.
Alternative approaches use generative adversarial networks
(GAN) to achieve extremely low bitrates [13]; however, their
training process tends to be unstable and their applicability to
practical image coding is still under study at the time of this
writing.

While several deep-learning-based image compression
methods have been proposed recently, little has been done
to assess the performance of these techniques compared to
traditional coding methods. Most of these works report only
objective results in terms of PSNR and MS-SSIM [14], [15],
[6]. Minnen et al. [7] ran a pairwise comparisons test with
10 observers, to assess the preference of their method over
JPEG, getting better results at a rate of 0.25 and 0.5 bpp.
Theis et al. [5] conducted a single-stimulus rating test with
24 viewers, comparing to [15], JPEG and JPEG 2000. Their
proposal outperforms the other methods, including JPEG 2000
at bitrates of 0.375 and 0.5 bpp.

To the authors’ knowledge, this is the first independent
study to assess the performance of deep-learning-based image
compression. Specifically, we propose the three following
contributions: i) we evaluate the rate-distortion performance
of two recent image compression methods based on deep
auto-encoders [15], [14], compared to JPEG 2000 and BPG
(Better Portable Graphics, a variant of HEVC Intra, which
currently yields state-of-the-art image coding performance);
ii) we evaluate the accuracy of 9 fidelity metrics in predicting
mean opinion scores for deep-learning compressed images;
iii) we assess the naturalness of deep-learning compressed
images, using an opinion- and distortion-unaware metric. Our
results show that, at least in some cases, deep-learning-based
compression achieve performance as good as BPG, yielding
more natural compressed images than JPEG 2000. In addi-



tion, our analysis suggests that the different kind of artifacts
produced by some deep-learning-based methods are difficult to
gauge using metrics such as PSNR. The subjectively annotated
dataset and the metrics will be made available online for the
research community.

II. DEEP-LEARNING-BASED IMAGE COMPRESSION

In this paper, we selected two popular deep-learning-based
compression algorithms: the auto-encoder-based method of
Ballé et al. [14], and the approach based on residual auto-
encoders with recurrent neural networks, proposed by Toderici
et al. [15]. This choice is motivated, on one hand, by the fact
that these two methods were amongst the first to produce (at
least in some cases) results with higher visual quality than
JPEG or JPEG2000 compression. On the other hand, more
recent methods are somehow inspired by these approaches,
but differently from [14] and [15], the code to reproduce their
results is not publicly available at the time of this writing,
which makes it difficult to carry out a fair evaluation.

A. Ballé et al. (2017)

Ballé et al. [14] propose an image compression algorithm
consisting of a nonlinear analysis/synthesis transform and a
uniform quantizer. The nonlinear transform is implemented
through a convolutional neural network (CNN) with three
stages. Each stage is composed by a convolution layer, down-
sampling and a non-linearity. Differently from conventional
CNN’s, which employ standard activation functions such as
ReLU or tanh, in [14] the non-linearity is biologically inspired
and implements a sort of local gain control by means of
a generalized divisive normalization (GDN) transform. The
parameters of the GDN are tuned locally, at each scale,
mimicking somehow local adaptation.

The authors of [14] directly optimize the rate-distortion
function D + λR, assuming uniform quantization. However,
the gradient of the quantization function would be zero almost
everywhere, thus hindering learning. Therefore, the authors
approximate quantization noise with i.i.d. uniform noise; this
corresponds to smoothing the discrete probability mass func-
tion of the transformed coefficients with a box filter. The
bitrate is then approximated with the differential entropy of the
smoothed, continuous distribution. The distortion is computed
as the mean squared error (MSE) between the original and
reconstructed samples. The whole coding scheme is optimized
end-to-end, for a given value of λ, resulting in different
operational points over the D(R) curve. Using MSE distortion,
this formulation can be shown to be equivalent to a variational
auto-encoder with a uniform approximate posterior [11], with
the important difference that a generative model tends to
minimize distortion (λ → 0), while in [14] the R/D trade-
off is optimized.

A Matlab code of this codec, together with trained models
for gray-scale and color images for six values of λ, can be
found at http://www.cns.nyu.edu/∼lcv/iclr2017/.

B. Toderici et al. (2017)

One of the limitations of [14] is that it requires a separate
model, and thus a new training, for each value of λ. Instead,
Toderici et al. [15] follow a different approach based on a
single model. This is obtained by making the encoding and
decoding processes progressive: after the first coding/decoding
iteration, the residue with respect to the original is computed;
afterwards, this residue is further encoded/decoded, and the
difference with respect to previous residue is found. This
scheme is applied on 32× 32 pixel patches. The compression
model is also coupled with a binarizer.

The model used by authors is based on Recurrent Neural
Networks (RNN). However, convolutions are used to replace
multiplications in the RNN traditional models. Several archi-
tectures derived from the well known LSTM networks were
tested and the Gated Recurrent Units were found to provide
the best results. The encoder uses 4 convolutional layers with
RNN elements, and a resolution reduction of 2 is achieved
after each layer by using a stride of 2 × 2. As such, for a
32×32×3 input image, the output after a single iteration will
be a 2× 2× 32 binary representation.

A Python implementation of the codec, in tensorflow frame-
work, can be found at https://github.com/tensorflow/models/
tree/master/research/compression/image encoder/. The net-
work architecture and weights are given in a binary format.

C. Coding rate computation

For each of the tested methods we need to compute the
number of bits used to represent the encoded images at various
quality level. This is straightforward for the standard methods
JPEG, JPEG2000 and BPG, which actually produce the com-
pressed file. On the other hand, the available implementations
of both methods by Ballé et al. and by Toderici et al. do
not directly provide an encoded file. In the first case, the
authors implemented a CABAC-like entropy coder to encode
the quantized transform coefficients, and the rate-distortion
results they provide are based on this encoder. However, the
latter is not available in their code. Therefore we performed an
entropy estimation and implemented a simple entropy encoder
(EE) using run-length encoding (RLE) to effectively represent
the long runs of zeros coming from null channels in the tensor
produced by this method. We found that the RLE+EE gave
coding rates close to the estimated entropy, therefore in the
following we use the former as coding rate. As for the Toderici
et al. method, it produces a tensor of values within {±1},
which can be considered as binary symbols of an encoded
stream. Thus, the number of symbols can directly be used as
size (in bits) of each encoded layer.

III. SUBJECTIVE EVALUATION

In this section, we describe the subjective experiment we
conducted in order to assess the quality of images compressed
with the methods in [14] and [15].



(a) Bistro (b) Computer (c) MasonLake (d) Screenshot (e) Showgirl (f)SouthBranchKingsRiver

Fig. 1. Test images used in the study. Bistro and Showgirl are tone-mapped images from the Stuttgard HDR video database [16]. MasonLake and
SouthBranchKingsRiver are tone-mapped images from the Fairchild HDR photographic survey [17].

A. Experiment setup

1) Material: For the study, we selected 6 uncompressed
images of size 736×960 pixels, shown in Figure 1. The Bistro
and Showgirl are cropped frames from high dynamic range
(HDR) video sequences in [16], which have been tone mapped
using the display adaptive tone mapping in [18]. MasonLake
and SouthBranchKingsRiver are also HDR images, cropped
and tone mapped with [18]. Computer was acquired by the
authors, using a Canon EOS 700D camera in raw mode,
and applying the camera native response curve and white
balancing. Finally, Screenshot is a screen capture, cropped
to match the resolution of test stimuli. These images were
selected out of 19 candidate pictures, on the basis of their
spatial information, key and colorfulness [19], as well as
on their semantics (outdoor, people/faces, man-made objects).
Screenshot was selected to include an example of synthetic
image, which might be representative of a screen-content
compression scenario.

2) Stimuli: Starting from these 6 pristine contents, we
generated 113 compressed stimuli, in a such a way to span
uniformly the impairment scale, as described in Section III-A3.
Specifically, we used 4 compression methods: JPEG 2000,
BPG, Ballé et al. [14] and Toderici et al. [15]. For JPEG
2000 and BPG we used the openJPEG library available for
download at http://www.openjpeg.org/ and the BPG implemen-
tation found at https://bellard.org/bpg/, while for the last two
algorithms we used the implementation publicly available from
the authors. We selected 5 bitrates, corresponding to 5 different
quality levels, for JPEG 2000 and BPG. For Ballé and Toderici,
it is not possible to fix an arbitrary bitrate for coding, as only
an ensemble of predefined bitrates was available. In particular,
in some cases we could not find images corresponding to the
highest quality level (“Imperceptible”).

3) Design: In the study we employ the double stimulus
impairment scale (DSIS) methodology [20], Variant I with a
side-by-side presentation. In each trial, a pair of images with
same content, one being original – reference and one com-
pressed – test was displayed, and the participants were asked
to evaluate the level of degradation of the test image relative
to the reference. A continuous impairment scale ([0,100], 100
corresponding to “Imperceptible” and 0 to “Very annoying”)
was utilized. Each participant evaluated 113 images, where

the pairs were selected randomly with a single constraint –
the same content could not appear twice consecutively.

4) Participants and apparatus: There were 23 participants
(15 male, 8 female) with an average age of 32. The experiment
was conducted in a dark and quiet room. The stimuli were
displayed at full HD on a Dell Ultrasharp U2410 24” display.
The ambient illumination in the room, measured between the
screen and participants, was 2.154 lux. The distance from the
screen was fixed to 70 cm (approximately three times the
height of the pictures on the display) with the eyes in the
middle of the display, both horizontally and vertically.

5) Procedure: Prior to the experiment, the participants
were verbally explained the experimental procedure. This was
followed by a training session with a stimulus that was not
used in the main study, showing all the levels of distortion
across different compression methods. Upon completion of the
training, they were left in the room to do the main test. There
were no time constraints for the image observation before
evaluating it. The images were shown side-by-side while the
slider was on the right edge all the time, allowing them to
vote when they made a decision. Once rated, the next image
pair was displayed. The average duration of the test was
approximately 22 minutes.

B. Results

Before looking at the data from the subjective experiment,
screening of the observers for detection of potential outliers
was performed, as proposed in the R-REC-BT.500-13 [20].
The procedure detected no outliers.

Following this, mean opinion score (MOS) values and
confidence intervals (CI) were computed for all 113 test
conditions. Rate distortion curves with computed MOS values
for all images used in the experiment are provided in Figure 2.
The results for the lowest bitrates are cluttered and have lowest
CIs, which is expected and confirms that this distortion level
corresponds unanimously to the “Very annoying” level on the
rating scale. However, there are several notable results visible
in the plots for the other bitrates.

Toderici method seems to result in highest perceived visual
quality in case of MasonLake, and for SouthBranchKingsRiver,
but in this case only at medium-high bitrate. At the same
time, the same method performs the worst for Bistro and
Showgirl scenes. Furthermore, images compressed using Ballé
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Fig. 2. MOS vs. bitrate. Error bars indicate 95% confidence intervals.

method got better subjective scores than JPEG 2000 in all but
SouthBranchKingsRiver case. This suggests a strong content
dependency in the performance of these methods, compared
to the more stable traditional codecs. It seems that for natural
images with a lot of textures the gains are more evident for
deep-learning-based methods. We further analyze the artifacts
of learning-based methods in Section IV-B.

IV. OBJECTIVE EVALUATION

In this section we report objective metrics results for the
stimuli of the study. Specifically, we evaluate the performance
of popular full-reference metrics employed for traditional
compression to predict visual quality of the coding methods
in [15] and [14]. Afterwards, we present a qualitative analysis
of the artifacts produced by deep-learning-based coding.

A. Fidelity metrics

We include in our evaluation nine commonly used full-
reference image quality metrics, see Tables I and II. We
used the publicly available implementation of these metrics
in the MeTriX MuX library for Matlab, available at http:
//foulard.ece.cornell.edu/gaubatz/metrix mux/. We evaluate fi-
delity metrics in terms of prediction accuracy, prediction
monotonicity, and prediction consistency, as recommended
in [21]. For prediction accuracy, Pearson correlation coeffi-
cient (PCC), and root mean square error (RMSE) are com-
puted. Spearman rank-order correlation coefficient (SROCC)
is used for prediction monotonicity, and outlier ratio (OR)
is calculated to determine the prediction consistency. These
performance metrics have been computed after performing a
non-linear regression on objective quality metric scores using
a logistic function.

The results are reported in Table I, per compression method
and over all contents, and in Table II, where: i) conventional
(JPEG 2000 and BPG) and deep-learning-based (Toderici et
al., Ballé et al.) are grouped; and ii) all methods and contents
are considered together. While for standard codecs the trends
are similar as in previous studies [22], an analysis of the results
in Table II reveals that the PCC of all metrics but SSIM, VIF,
UQI and IFC significantly drops when evaluated on Ballé and
Toderici, compared to BPG and JPEG 2000 (p < 0.05). In
particular, the reduction of prediction accuracy is highest for
PSNR. A probable explanation for this drop is the different
kinds of artifacts produced by these two compression methods.
To confirm this behavior, we report in Figure 3(a) the MOS
with respect to PSNR values. We see from the scatter plot
that for Ballé et al. [14] and Toderici et al. [15], stimuli
with similar PSNR values might be significantly different in
terms of perceived visual quality. This phenomenon is much
less present when using different metrics, such as MS-SSIM
and VIF (Figures 3(a) and (b), respectively). We thus rec-
ommend to avoid using PSNR when evaluating compression
performance of future deep-learning-based image or video
compression techniques. Table II suggests instead to employ
VIF and MS-SSIM.

B. Qualitative results

In order to show examples of the artifacts of deep-learning-
based methods, we report in Figure 4 some details of coded
images. Part (a) of the figure demonstrates a case where
Ballé et al. achieve clearly better visual quality than JPEG
2000 at a higher bitrate. Notice that there are no visible,
unnatural ringing or mosquito noise artifacts, nor blocking, and
although high-frequency details are somehow blurred, edges



TABLE I
STATISTICAL ANALYSIS OF OBJECTIVE QUALITY METRICS ON THE PROPOSED DATASET (I). BEST METRICS VALUES PER COLUMN ARE HIGHLIGHTED IN

BOLD.

JPEG2K BPG Balle Toderici
Metric PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR
PSNR 0.860 0.873 15.1 0.14 0.851 0.854 16.2 0.20 0.621 0.574 19.7 0.20 0.699 0.707 19.9 0.18
SSIM 0.894 0.892 13.5 0.07 0.915 0.901 12.5 0.07 0.860 0.863 12.8 0.08 0.836 0.824 15.3 0.11

MS-SSIM 0.961 0.958 8.3 0.00 0.971 0.956 7.4 0.00 0.936 0.939 8.9 0.00 0.923 0.898 10.7 0.00
VSNR 0.903 0.907 12.9 0.07 0.889 0.882 14.1 0.10 0.750 0.728 16.6 0.16 0.768 0.738 17.8 0.18

VIF 0.958 0.956 8.7 0.03 0.968 0.949 7.8 0.00 0.929 0.924 9.3 0.04 0.940 0.911 9.5 0.07
UQI 0.833 0.833 16.7 0.23 0.792 0.770 18.9 0.33 0.760 0.752 16.3 0.20 0.863 0.863 14.1 0.04
IFC 0.921 0.915 11.7 0.07 0.931 0.915 11.3 0.07 0.880 0.876 11.9 0.04 0.964 0.932 7.4 0.04

NQM 0.881 0.884 14.3 0.10 0.916 0.905 12.4 0.10 0.793 0.804 15.3 0.12 0.848 0.817 14.7 0.11
WSNR 0.946 0.949 9.8 0.00 0.962 0.953 8.5 0.00 0.896 0.889 11.2 0.04 0.890 0.866 12.7 0.11

TABLE II
STATISTICAL ANALYSIS OF OBJECTIVE QUALITY METRICS ON THE PROPOSED DATASET (II). RESULTS ARE GROUPED CONSIDERING: STANDARD IMAGE
CODECS (JPEG 2000 AND BPG); DEEP-LEARNING-BASED COMPRESSION ALGORITHMS; AND ALL THE 113 STIMULI OF THE DATASET. BEST METRICS

VALUES PER COLUMN ARE HIGHLIGHTED IN BOLD.

JPEG2K & BPG Balle & Toderici All methods
Metric PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE
PSNR 0.858 0.870 15.676 0.652 0.638 20.156 0.763 0.766 18.619
SSIM 0.902 0.908 13.154 0.829 0.830 14.864 0.866 0.871 14.392

MS-SSIM 0.964 0.957 8.170 0.917 0.907 10.6 0.941 0.936 9.77604
VSNR 0.888 0.896 14.011 0.740 0.731 17.881 0.815 0.815 16.677

VIF 0.962 0.953 8.348 0.931 0.919 9.740 0.944 0.936 9.516
UQI 0.812 0.802 17.813 0.815 0.821 15.423 0.813 0.807 16.751
IFC 0.925 0.917 11.615 0.922 0.907 10.282 0.922 0.910 11.163

NQM 0.897 0.899 13.499 0.803 0.794 15.842 0.852 0.848 15.078
WSNR 0.953 0.955 9.261 0.866 0.851 13.318 0.910 0.908 11.914
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Fig. 3. Scatter plots for MOS against different objective metrics.

and straight lines are generally well preserved. In part (b) of
Figure 4, these characteristic artifacts are shown in comparison
with a BPG-compressed image at similar bitrate, which has
higher MOS. Notice again the sort of “brush” effect for Ballé,
and the little presence of artifacts on high-contrast edges.
Finally, in Figure 4(c) we show an example for Toderici against
JPEG 2000. The two images have similar bitrates; however,
JPEG 2000 has a better PSNR score while Toderici has a
higher MOS score. This is interesting to note as the image
compressed with Toderici et al. has more details but loses in
PSNR most likely due to blocking artifacts. It should be noted
that these type of artifacts have been partially suppressed in
their follow-up work [23]. However, we did not have access
to the updated implementation.

In order to investigate further the distortion of Ballé and
Toderici’s methods, we computed the natural image quality
evaluator (NIQE) metric [24] for all stimuli but Screenshot
(which is a synthetic image). NIQE measures the distance of
the distribution of mean-contrast normalized coefficients of
the image under study with respect to a reference distribution

of the same coefficients found on a large dataset of pristine
images, and thus is both opinion- and distortion-unaware.
Lower values of the metric indicate higher naturalness. Notice
that stimuli compressed with both Ballé and Toderici tend to
be more natural, i.e., they follow better the statistics of natural
images, than images coded with JPEG 2000.

V. DISCUSSION AND CONCLUSIONS

This is the first, independent study to evaluate subjectively
and objectively the quality of two deep-learning-compressed
images. On our dataset, both methods achieve results similar
to or better than JPEG 2000 in many cases, and in other
cases their rate-distortion performance is equivalent to that of
BPG. These results are somewhat justified by the more natural
appearance of images compressed by the two deep-learning-
based methods, compared, e.g., to JPEG 2000. The reason
for this is most probably related to the much more powerful
generative model expressed by deep auto-encoders, compared
to simple image transforms such as DCT and wavelets (in the
case of BPG, the use of in-loop filters considerably reduces



(a) (left) Ballé, 0.38 bpp; (right) JPEG 2K, 0.43 bpp (b) (left) Ballé, 0.09 bpp; (right) BPG, 0.08 bpp (c)(left)Toderici,0.125 bpp; (right)JPEG 2K, 0.1 bpp

Fig. 4. Examples of images (details) coded with different methods. (a) A case where an image coded with the method of Ballé et al. has better quality than
JPEG 2000 at a similar bitrate. (b) An example where Ballé et al. has worse quality than BPG. (c) An example of Toderici et al. has better quality in MOS
(12.4 vs 8.1) but lower in PSNR (20.85dBs vs 21.35dBs).
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Fig. 5. Natural Image Quality Evaluator (NIQE) metric, compute for different
compression methods. Only bitrates below 1.2 bpp are reported. Black squares
indicate the values of NIQE for the pristine contents.

the visibility of blocking, at the advantage of naturalness). A
direct consequence is that simple pixel-based metrics such as
the PSNR, which are still widely used in image and video
coding, are much less accurate to judge visual quality with
the new methods.

A more detailed analysis would require coding images
at the same (or as close as possible) bitrate and conduct
pairwise comparison tests to evaluate precisely the preferences
of observers. However, this is difficult at this stage as the
available implementations of Ballé et al. [14] and Toderici
et al. [15] do not enable a fine-granularity rate control. Yet,
our results are still surprising, when thinking that BPG and
JPEG 2000 are the product of decades of coding optimization
and engineering, while the methods of Ballé et al. [14] and
Toderici et al. [15] are proofs of concept developed in the last
year. This suggests a great potential in using deep generative
models for next-generation image and video codecs.
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